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Abstract
The effects of inelastic interactions between current-carrying electrons and vibrational modes of
a nanoscale junction are a major limiting factor on the stability of such devices. A method for
dynamical simulation of inelastic electron–ion interactions in nanoscale conductors is applied to
a model system consisting of an adatom bonded to an atomic wire. It is found that the
vibrational energy of such a system may decrease under bias, and furthermore that, as the bias is
increased, the rate of cooling, within certain limits, will increase. This phenomenon can be
understood qualitatively through low-order perturbation theory, and is due to the presence of an
anti-resonance in the transmission function of the system at the Fermi level. Such
current-assisted cooling may act as a stabilization mechanism, and may form the basis for a
nanoscale cooling ‘fan’.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The effects of inelastic interactions between the electrons and
the nuclear degrees of freedom in current-carrying nanoscale
systems have been extensively studied in recent years [1]. Such
phenomena [2–5] have a strong influence on the conductance
properties of nanoscale junctions and effects such as Joule
heating and electromigration place limitations on the stability
of such devices under current flow. In particular, the vibrational
modes of nanojunctions can be often weakly coupled to those
of the bulk, leading to a highly elevated effective vibrational
temperature under current.

Here, we consider a model system that consists of an
adatom bonded to an atomic wire. We illustrate numerically
that the vibrational energy of the adatom may decrease under
current flow and furthermore, within certain limits, that the
rate of this cooling increases with increasing bias. We further
show that this phenomenon may be understood qualitatively
within low-order perturbation theory, and that the basis of the
phenomenon is an anti-resonance in the transmission function
of the junction at the Fermi level. Although the system
envisaged here is a model one, the mechanism is generic and
we hence propose that a system which possesses such a feature
may form the basis for a nanoscale cooling ‘fan’.

To perform the numerical simulations we use the
correlated electron–ion dynamics (CEID) method. The
method may be viewed as an extension of Born–Oppenheimer

molecular dynamics to include approximately both correlations
between electrons and ions and the quantum nature of nuclei.
This amounts practically to an expansion of the exact equation
of motion for the full density matrix of the combined
electron–ion system about the mean classical trajectories of
the ions [6, 7]. The expansion involves an infinite hierarchy
of equations of motion for operators which correlate electrons
to fluctuations in the ionic positions and momenta. In the
approximation employed here, the equations are truncated to
lowest non-trivial order in the electron–ion correlations and
in the fluctuations of the ionic trajectories about the classical
mean. The method has been used to examine inelastic current–
voltage spectra in model systems [7] and, in combination with
electronic open boundaries, to study the real-time heating and
eventual equilibration of a dynamical ion with the current-
carrying electrons [8].

2. The system

The system that we consider is shown in figure 1. It consists
of a one-dimensional perfect atomic chain with a light adatom
bonded to a single atom in the centre of the chain. The adatom
is constrained to move in the direction perpendicular to the
chain and is the only atom allowed to move. The system
is described by a single-orbital nearest-neighbour orthogonal
tight-binding model with parameters for gold [9], except the
band filling which here is set to 1/2. The interatomic distance
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Figure 1. The adatom system discussed in the text.

within the chain is 2.5 Å, close to the equilibrium bond length
for a perfect gold chain within the chosen tight-binding model.
Following relaxation of the adatom-chain bond at zero bias,
the adatom is positioned ∼2.41 Å above the chain. For these
parameters, the hopping integral in the perfect chain is H =
−3.88 eV and that between the adatom and the chain is A =
−4.49 eV. Non-interacting electrons are assumed throughout.
All onsite energies are set equal to zero.

We can obtain an insight into the conductance properties
of the system by examining its elastic transmission function as
a function of energy, shown in figure 2. The notable feature
is the anti-resonance at the Fermi level, at the centre of the
band, the origin of which is the interference of electron waves
between the adatom and the chain. To see this, we consider
the matrix elements of the electronic density-of-states (DOS)
operator, D̂(E) ≡ [Ĝ−(E) − Ĝ+(E)]/2π i, where G±(E)

are the retarded and advanced Green’s functions of the system,
within the space of the adatom, a, and the chain atom, c, below
it:

Daa = −π−1 2H A2 sin φ/[(2H E sin φ)2 + A4]

Dac = −π−1 2H AE sin φ/[(2H E sin φ)2 + A4]

Dcc = −π−1 2H E2 sin φ/[(2H E sin φ)2 + A4].

Here φ and the energy E are related by E = 2H cos φ. For
energies near the centre of the band (E = 0, φ = π/2):

Daa ≈ −π−1 2H sin φ/A2

Dac ≈ −π−1 4H 2 cos φ sin φ/A3

Dcc ≈ −π−1 8H 3(cos φ)2 sin φ/A4.

These may be compared with the DOS matrix elements within
the end atom, call it 1, and the atom next to it, call it 2, for a
semi-infinite perfect chain, with a hopping integral A:

d11 = −π−1 sin φ/A

d12 = −π−1 2 cos φ sin φ/A,

d22 = −π−1 4(cos φ)2 sin φ/A.

Thus, in terms of the energy dependence, the local electronic
structure within the a−c complex in the adatom system mimics
that within the two end atoms in a semi-infinite chain, which,
in turn, is determined by the interference between incident and
reflected waves. Another way to think of the anti-resonance
is as a special case of a Fano resonance [10]: an effect
arising from the coupling of a discrete level to a continuum,

Figure 2. Transmission function for the adatom system. The feature
of interest is the anti-resonance centred at the Fermi level EF = 0.
The bias (the electrochemical potential difference) V in the
simulations is symmetrically applied relative to the Fermi level.

whose occurence in mesoscopic systems has attracted recent
attention [11–13].

The key feature is that Dac and Dcc, like d12 and d22,
simultaneously vanish at the centre of the band. Moreover, at
the centre of the band, the Green’s function matrix element
G+

cc for the adatom system vanishes (as does g+
22 for the

semi-infinite chain), which is the origin of the node in the
transmission function,

T (E) = 4(E/H )2[1 − (E/2H )2]
4(E/H )2[1 − (E/2H )2] + (A/H )4

(1)

at E = 0.
The low conductance at low biases suggests that the

presence of electron–phonon interactions will provide an
additional channel for conductance. To illustrate the effect of
the electron–phonon interaction on the current, we run a series
of CEID simulations at various voltages for a variety of initial
oscillator temperatures, which correspond to different degrees
of vibrational excitation of the adatom. The simulations use
the electronic open-boundary method described in [8]. We
take a 301-atom chain, with 100 atoms in each electrode, with
the central 101 atoms of the chain forming the device region.
The adatom is bonded to the central atom of the chain. With
the mass of the adatom set to 1 amu, the Born–Oppenheimer
zero-point energy of the adatom is 1

2 h̄�0 ∼ 0.17 eV. The
open-boundary parameters of [8] are set to � = 0.5 eV,
� = 0.01 eV.1 First, we consider the externally damped
limit [14], in which the effective phonon occupation and the
mean oscillator position are kept frozen in time. Figure 3
shows the elastic current–voltage spectrum, along with the
current–voltage spectra obtained via the CEID formalism. It
can be clearly seen that for this low-transmission system the
effect of the electron–phonon interaction is to increase the
conductance; furthermore, as the temperature of the oscillator
increases, the effect on the current increases.

1 The finite value of � leads to a slight thermal broadening of the electronic
distributions which enter the device region.
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Figure 3. Elastic current–voltage spectrum for the adatom system
along with inelastic current–voltage spectra obtained via the CEID
method for a variety of initial oscillator temperatures, in the
externally damped limit. Tph = 2000 K corresponds to a phonon
occupancy of ∼0.2, Tph = 10 000 K corresponds to an occupancy
∼2.

3. Vibrational energy under current

We next examine the response of the oscillator by unfreezing
the ionic variables, and allowing the vibrational energy of
the adatom to respond to the current-carrying electronic
system. Again we consider a variety of initial effective ionic
temperatures. Figures 4 illustrate the effect of the current on
the vibrational energy2, and the response of the current to the
change in vibrational excitation.

In figure 4(a) with the oscillator initially in its ground
state, we see that the effect of the current is to inject energy into
the vibrational degree of freedom, in line with conventional
current-induced heating. Since the oscillator is not connected
to any other vibrational modes, its energy increases until it
equilibrates with the electron gas. The current at a given bias
is greater than in the earlier ‘frozen-phonon’ calculation, due
to a small bias-induced relaxation of the adatom which slightly
narrows the anti-resonance in the transmission function.

In figures 4(b), (c), where the oscillator is initially in an
excited state, we notice that there is a decrease in the oscillator
energy at low bias. Furthermore, as the bias is increased, the
initial rate of cooling increases, indicating that an increase in
current facilitates the cooling of the oscillator. As the bias is
further increased, a crossover at which the rate of cooling has
a maximum can be clearly seen. This phenomenon of current-
assisted cooling acts as a stabilizing mechanism for the system,
by helping to reduce the vibrational energy of the adatom.
Curiously, due to the geometry of the system, no actual current
flows through the bond connected to the adatom; there is just a
bias-induced excitation of the local electronic structure.

2 For the purposes of the present calculation, the vibrational energy of the
adatom is defined as U = CP P /2M + KBOCRR/2 + P̄2/2M where CP P =
〈( P̂ − P̄)2〉, CRR = 〈(R̂ − R̄)2〉, R̄ = 〈R̂〉, P̄ = 〈P̂〉 and KBO is the Born–
Oppenheimer spring constant. R̂, P̂ are the oscillator position and momentum
operators. The contribution of the classical kinetic energy P̄2/2M is much
less than CP P /2M. U here includes the zero-point vibrational energy.

Figure 4. Vibrational energy (left) of the adatom at various biases as
a function of time with corresponding current traces (right), for
various initial oscillator temperatures. The initial step-like features in
the current result from the transients following the application of the
open boundaries [14]. From top to bottom, the initial oscillator
temperatures are (a) Tph = 0 K, (b) Tph = 5000 K and
(c) Tph = 10 000 K.

A further point to note is that the equilibrium energy of the
oscillator for a given bias is largely independent of the initial
conditions of the oscillator; this energy is found by fitting the
functional form U(t) = U(t = 0) + U1(1 − exp(−t/τ)),
where U1 and τ are fitting parameters, to the data from the
CEID calculations, from which the equilibrium energy is given
by Ueql ≈ U(t = 0) + U1. The equilibrium energy,
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Figure 5. The oscillator energy, Ueql, for equilibrium with the
current-carrying electrons as a function of bias for the three initial
oscillator temperatures considered. The plot illustrates that the
equilibrium energy is essentially independent of the initial
conditions.

shown in figure 5, increases as a function of bias but remains
substantially lower than that for an ion in a ballistic chain for
which Ueql(V ) ∼ eV/2 [8].

4. Fermi Golden Rule

The above results can be explained qualitatively with the aid
of the Fermi Golden Rule (FGR). Within the FGR, the rate
of energy transfer U̇ into a single vibrational mode of angular
frequency �0 can be written in the form [14]

U̇(t) = −κ

(
U(t) − h̄�0

2

)
+ w0 (2)

where U = (Nph + 1
2 )h̄�0, with Nph related to the effective

phonon temperature via Nph = [exp(h̄�0/kBTph) − 1]−1. It
can be shown [14] that the quantity κ (which characterizes
the energy loss from the vibrations to the electrons) largely
depends on the local electronic structure at the edges of the
available energy window for conduction, while w0 (which
controls the heating of the vibrations) collects contributions
from the full conduction energy window. As a consequence
of the suppression of the DOS operator matrix elements Dac

and Dcc at EF, the coupling of the adatom to conduction
electrons at those energies is weak. Conversely, at energies
away from EF, this coupling is enhanced. As a result, at
low bias, κ is suppressed; as the bias is increased, the Fermi
levels of the left and right electrodes move into regions of
improved electronic coupling, and κ hence increases. The
oscillator energy for equilibrium with the current-carrying
electrons (in the absence of lattice heat conduction), Ueql(V ) =
w0(V )/κ(V ) + h̄�0/2, increases with bias (as shown in
figure 5), but remains substantially lower than that for an ion
in a ballistic chain. Rewriting equation (2) as

U̇(t) = −κ(V )(U(t) − Ueql(V )), (3)

we see that, for U(t = 0) sufficiently larger than Ueql(V ),
the initial cooling rate, U̇(t = 0), should increase with
moderate increases in bias, and the relaxation of U down
towards Ueql(V ) speeds up. This is the origin of the current-
assisted cooling seen in the dynamical simulations.

We note that the present system is the converse of that
considered in [14], namely a system with a narrow resonance
at the Fermi level. In that case, κ(V ) decreases with bias, while
w0(V ) saturates. In the limit of perfectly trapped phonons, this
leads to a substantial enhancement of both the maximal heating
and the phonon–electron equilibration time for voltages which
engulf the resonance, compared with a resonance-free system.

Figure 6. U̇ (t = 0) for the adatom system within the Fermi Golden Rule (solid line), for a variety of effective initial oscillator temperatures.
The dots are obtained from a fit to the CEID calculations.
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To explore this further, we use the FGR to calculate the
heating rates for the adatom system, within the same tight-
binding model as in the CEID calculation, with an electronic
structure computed within the Landauer formalism for an
infinite perfect chain, with the adatom in the relaxed position at
zero bias3. The result for U̇(t = 0) is compared with that from
the CEID calculation which, using the fitting procedure above,
is given by U̇(t = 0) ≈ U1/τ . The reasonable agreement
in the qualitative trends is illustrated in figure 6. Possible
reasons for the differences between the two calculations are
the small bias-induced relaxation in the average adatom-chain
bond length and the higher-order electron–phonon coupling
implicitly present in the dynamical simulation, as well as
the loss of energy resolution due to the approximate open-
boundary method in the CEID calculation [8].

We have demonstrated the basis for a nanoscale device
in which the bias assists the energy relaxation of a hot ion,
by enhancing its coupling to the conduction electrons. A
detectable signature of the underlying electronic structure that
enables the effect is the anti-resonance in the transmission
function. The resultant model device constitutes a notional
current-controlled cooling fan for the hot ion.

Although we have considered only a simple model system,
we expect the key findings to be reasonably robust with the
details of the calculation, at least within the present model
setup. We do not expect the effect to change qualitatively
with variations in the band filling in the chain, provided that
the energy level on the adatom remains pinned against EF.
Variations in the adatom-chain hopping integral would alter the
width of the anti-resonance, and hence the voltage scale for the
current-assisted cooling in figure 6. Finally, if the mass of the
adatom is sufficiently small, that would help to decouple its
motion from that of the other atoms in the system, bringing us
closer to the model scenario assumed here.

3 The FGR calculation uses equation (C1) in [14]. The derivative of the

adatom-chain hopping integral with distance is 4 × 4.49/2.41 eV Å
−1

. The
electronic temperature in the Fermi–Dirac functions was set to zero.
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